머신 러닝: 회귀 모델

0
Language

Last updated on February 23, 2025 11:24 am

Learn about regression models and their applications in predicting continuous values. Explore linear regression, multiple regression, and ridge regression. Understand how to evaluate model performance and select the best model. Implement these techniques in Python.

Add your review

사례 연구 – 주택 가격 예측

첫 번째 사례 연구 주택 가격 예측에서는 입력 특성(면적, 방 및 화장실 개수 등)에서 연속적인 값(가격)을 예측하는 모델을 만듭니다. 이는 회귀를 적용할 수 있는 많은 장소 중 하나일 뿐입니다. 그 외 다른 응용의 범위는 의약품에 대한 건강 효과, 금융 분야에서의 주가, 고성능 컴퓨터 전력 사용 예측에서부터 유전자 발현에 중요한 조절기를 분석하는 것까지 다양합니다.
본 강의에서는 예측 및 특성 선택 태스크를 위한 정규화된 선형 회귀 모델에 대해 알아봅니다. 매우 큰 특성의 집합을 처리하고 다양한 복잡도 모델 중 선택할 수 있습니다. 또한 이상치와 같은 데이터의 양상이 선택한 모델과 예측값에 주는 영향도 분석합니다. 이와 같은 모델을 피팅하기 위해 큰 데이터 세트에 따라 확장하는 최적화 알고리즘을 구현해 봅니다.
학습 목표: 본 강의를 끝내면 여러분은:
-회귀 모델의 입력과 출력을 설명할 수 있습니다.
-데이터를 모델링할 때 편향과 분산을 비교 및 대조할 수 있습니다.
-최적화 알고리즘을 사용하여 모델 매개변수를 예상할 수 있습니다.
-교차 검증을 사용하여 매개변수를 조정할 수 있습니다.
-모델의 성능을 분석할 수 있습니다.
-희소성의 개념과 라쏘가 희소 해로 이어지는 방법을 설명할 수 있습니다.
-모델 중 선택할 방법을 배포할 수 있습니다.
-모델을 활용하여 예측을 형성할 수 있습니다.
-주택 데이터 세트를 사용하여 가격을 예측하는 회귀 모델을 구축할 수 있습니다.
-이와 같은 기술을 Python에서 구현할 수 있습니다.

What you will learn

환영합니다

회귀는 가장 중요하고 널리 사용되는 머신 러닝 및 통계 도구 중 하나입니다. 데이터의 특성과 관측된 연속 값 응답 간의 관계를 학습하여 여러분의 데이터에서 예측할 수 있습니다. 회귀는 주가 예측에서 유전자 조절 네트워크 이해에 이르기까지 방대한 응용이 가능합니다. 본 강의에 대한 소개에서는 앞으로 다룰 주제와 여러분이 이미 알고 있다고 가정하는 배경지식 및 리소스에 대한 개요를 제공합니다.

단순 선형 회귀

본 강의는 가장 기본적인 회귀 모델인 데이터에 선을 피팅하는 것에서부터 시작합니다. 데이터의 단일 일변량 특성의 예측을 형성하기 위한 이 단순 모델을 ‘단순 선형 회귀’라고 부릅니다. 본 모듈에서는 높은 수준의 회귀 작업을 설명한 다음 이와 같은 개념을 단순 선형 회귀 사례를 통하여 전문화합니다. 폐쇄형 해와 경사 하강이라는 반복적인 최적화 알고리즘을 모두 사용하여 단순 회귀 모델을 형식화하고 모델을 데이터에 피팅하는 방법을 배웁니다. 이 적합 함수를 기반으로 예상된 모델 매개변수 및 형태 예측을 해석합니다. 또한 외부 관측치에 대한 적합의 민감도를 분석합니다. 면적을 통해 주택 가격을 예측하는 사례 연구의 맥락에서 이 모든 개념을 검토합니다.

다중 회귀

단순 선형 회귀를 넘어서는 다음 단계는 데이터의 다중 특성이 예측을 형성할 때 사용되는 ‘다중 회귀’를 고려하는 것입니다. 보다 구체적으로 본 모듈에서는 단일 변수(예: ‘면적’)와 관측된 응답(예: ‘주택 매매가’) 사이 보다 복잡한 관계의 모델을 구축하는 방법을 배웁니다. 이때 데이터에 다항을 피팅하거나 응답 값의 계절적 변화를 포착하는 등의 작업이 포함됩니다. 또한 여러 입력 변수(예: ‘면적’, ‘방 개수’, ‘화장실 개수’)를 통합하는 방법도 배웁니다. 그다음 이와 같은 모든 모델이 선형 회귀 프레임워크 내에서 여전히 다중 ‘특성’을 사용하여 변환하는 방법을 설명할 수 있습니다. 이 다중 회귀 프레임워크 내에서 데이터에 모델을 피팅하고, 예상된 계수를 해석하며, 예측을 형성할 수 있습니다. 또한 다중 회귀 모델을 피팅하기 위한 경사 하강 알고리즘도 구현합니다.

성능 평가

이와 같은 모델의 매개변수 추정을 위한 선형 회귀 모델과 알고리즘에 대해 배웠으니 이제 새 데이터 예측에 여기서 고려한 방법을 얼마나 잘 수행하고 있는지 평가할 수 있습니다. 또한 가능한 모델 중 가장 성능이 좋은 모델을 선택할 수 있습니다. 본 모듈은 모델 선택 및 평가의 중요한 주제를 다루고 있습니다. 이와 같은 분석의 이론적 측면과 실제적 측면을 모두 검토합니다. 먼저 예측의 ‘손실’을 측정하는 개념을 살펴보고 이를 통해 학습, 검정 및 일반화 오차를 정의합니다. 이와 같은 오차 측정의 경우 모델 복잡도에 따라 오차가 어떻게 달라지고 예측 성능에 대한 유효성 평가를 구성할 때 오차가 어떻게 사용되는지 분석합니다. 이는 머신 러닝의 기본인 편향-분산 트레이드오프에 대한 중요한 논의로 이어집니다. 마지막으로 먼저 모델 중에서 선택한 다음 선택한 모델의 성능을 평가하는 방법을 고안합니다. 본 모듈에 설명된 개념은 이번 강의에서 다루는 회귀 설정을 훨씬 뛰어넘는 모든 머신 러닝 문제의 핵심입니다.

릿지 회귀

모델 복잡도가 증가함에 따라 모델의 성능이 어떻게 변화하는지 살펴보았으며, 복잡한 모델이 훈련 데이터에 대해 과적합해지는 잠재적 문제를 설명할 수 있습니다. 이 모듈에서는 이 문제를 자동으로 처리하기 위한 매우 간단하지만 아주 효과적인 기술을 살펴보겠습니다. 이 방법을 ‘릿지 회귀’라고 합니다. 복잡한 모델에서 시작하지만 훈련 데이터에 대한 적합도 측정은 물론 과적합 함수로부터 해의 편향을 크게 하는 항까지 통합하는 방식으로 모델을 피팅합니다. 이를 위해 과적합 함수의 증상을 살펴보고 이를 사용하여 수정된 최적화 목적 함수에 쓸 정량적 측정값을 정의합니다. 릿지 회귀 목적 함수에 피팅하기 위해 폐쇄형 및 경사 하강 알고리즘을 모두 도출합니다. 이와 같은 형태는 다중 회귀를 위해 도출한 기존 알고리즘에서 약간 수정된 형태입니다. 과적합을 방지하는 편향의 강도를 선택하기 위해 ‘교차 검증’이라는 일반적인 방법을 살펴봅니다. 교차 검증 및 경사 하강을 모두 구현하여 릿지 회귀를 피팅하고 정규화 상수를 선택합니다.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “머신 러닝: 회귀 모델”

×

    Your Email (required)

    Report this page
    머신 러닝: 회귀 모델
    머신 러닝: 회귀 모델
    LiveTalent.org
    Logo