Manipulating Time Series Data with xts and zoo in R

0
Level

Advanced

Language

Access

Paid

Certificate

Paid

The xts and zoo packages make the task of managing and manipulating ordered observations fast and mistake free.

Add your review

Course Description

Time series are all around us, from server logs to high frequency financial data. Managing and manipulating ordered observations is central to all time series analysis. The xts and zoo packages provide a set of powerful tools to make this task fast and mistake free. In this course, you will learn everything from the basics of xts to advanced tips and tricks for working with time series data in R.

What You’ll Learn

Introduction to eXtensible Time Series, using xts and zoo for time series

xts and zoo are just two of the many different types of objects that exist in R. This chapter will introduce the basic objects in xts and zoo and their components, and offers examples of how to construct and examine the data.

Merging and modifying time series

One of the most important parts of working with time series data involves creating derived time series. To do this effectively, it is critical to keep track of dates and times. In this chapter you will look at how xts handles merging new columns and rows into existing data, how to deal with the inevitable missing observations in time series, and how to shift your series in time.

Extra features of xts

Now that you are comfortable with most of the core features, its time to explore some of the lesser known (but powerful!) aspects of working with xts. In this final chapter you will use the internals of the index to find repeating itervals, see how xts provides intuitive time zone support, and experiment with ways to explore your data by time – including identifying frequency and coverage in time. Let’s finish this course!

First Order of Business – Basic Manipulations

Now that you can create basic xts objects, it’s time to see how powerful they can be. This chapter will cover the basics of one of the most useful features of xts: time based subsetting. From there you’ll explore additional ways to extract data using time phrases, and conclude with how to do basic operations like adding and subtracting your xts objects.

Apply and aggregate by time

Now the fun begins! A very common usage pattern for time series is to calculate values for disjoint periods of time or aggregate values from a higher frequency to a lower frequency. For most series, you’ll often want to see the weekly mean of a price or measurement. You may even find yourself looking at data that has different frequencies and you need to normalize to the lowest frequency. This chapter is where it all happens. Hang tight, and lets get going!

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Manipulating Time Series Data with xts and zoo in R”

×

    Your Email (required)

    Report this page
    Manipulating Time Series Data with xts and zoo in R
    Manipulating Time Series Data with xts and zoo in R
    LiveTalent.org
    Logo
    LiveTalent.org
    Privacy Overview

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.