Data Privacy and Anonymization in Python
Learn to process sensitive information with privacy-preserving techniques.
Course Description
Data privacy has never been more important. But how do you balance privacy with the need to gather and share valuable business insights? In this course, you’ll learn how to do just that, using the same methods as Google and Amazon—including data generalization and privacy models, like k-Anonymity and differential privacy. In addition to touching on topics such as GDPR, you’ll also discover how to build and train machine learning models in Python while protecting users’ sensitive information such as employee and income data. Let’s get started!
What You’ll Learn
Introduction to Data Privacy
Get ready to apply anonymization techniques such as data suppression, masking, synthetic data generation, and generalization. In this chapter, you’ll learn how to distinguish between sensitive and non-sensitive personally identifiable information (PII), quasi-identifiers, and the basics of the GDPR. You’ll also encounter real-life examples of what can go wrong if you don’t follow these best practices.
Differential Privacy
Learn about differential privacy, the model used by major technology companies such as Apple, Google, and Uber. In this chapter, you’ll explore data by generating private histograms and computing private averages in data. You’ll also create differentially private machine learning models that allow businesses to increase the utility of their data.
More on Privacy-Preserving Techniques
Discover how to anonymize data by sampling from datasets following the probability distribution of the columns. You’ll then learn how to apply the k-anonymity privacy model to prevent linkage or re-identification attacks and use hierarchies to perform data generalization in categorical variables.
Anonymizing and Releasing Datasets
In this final chapter, you’ll learn how to apply dimensionality reduction methods such as principal component analysis (PCA) to anonymize large multi-column datasets. You’ll then use Faker to generate realistic and consistent datasets, and scikit-learn to create synthetic datasets that follow a normal distribution. Lastly, you’ll tie everything you learned in this course together as you combine multiple techniques to safely release datasets to the public.
User Reviews
Be the first to review “Data Privacy and Anonymization in Python”
You must be logged in to post a review.
There are no reviews yet.