Deep Learning with Python for Image Classification
Learn Deep Learning with Python and PyTorch for Image Classification using Pre-trained Models. Connect with Google Colab, perform data preprocessing, and use ResNet and AlexNet models for single-label and multi-label classification. Ideal for Deep Learning enthusiasts and researchers.
What you’ll learn
- Learn Image Classification using Deep Learning PreTrained Models
- Learn Single-Label Image Classification and Multi-Label Image Classification
- Learn Deep Learning Architectures Such as ResNet and AlexNet
- Write Python Code in Google Colab
- Connect Colab with Google Drive and Access Data
- Perform Data Preprocessing using Transformations
- Perform Single-Label Image Classification with ResNet and AlexNet
- Perform Multi-Label Image Classification with ResNet and AlexNet
- Learn Transfer Learning
- Dataset, Data Augmentation, Dataloaders, and Training Function
- Deep ResNet Model FineTuning
- ResNet Model HyperParameteres Optimization
- Deep ResNet as Fixed Feature Extractor
- Models Optimization, Training and Results Visualization
Show moreShow less
In this course, you will learn Deep Learning with Python and PyTorch for Image Classification using Pre-trained Models. Image Classification is a computer vision task to recognize an input image and predict a single-label or multi-label for the image as output using Machine Learning techniques.
You will use Google Colab notebooks for writing the python code for image classification using Deep Learning models.
You will learn how to connect Google Colab with Google Drive and how to access data.
You will perform data preprocessing using different transformations such as image resize and center crop etc.
You will perform two types of Image Classification, single-label Classification, and multi-label Classification using deep learning models with Python.
You will be able to learn Transfer Learning techniques:
1. Transfer Learning by FineTuning the model.
2. Transfer Learning by using the Model as Fixed Feature Extractor.
You will learn how to perform Data Augmentation.
You will learn how to load Dataset, Dataloaders.
You will Learn to FineTune the Deep Resnet Model.
You will learn how to use the Deep Resnet Model as Fixed Feature Extractor.
You will Learn HyperParameters Optimization and results visualization.
In single-label Classification, when you feed input image to the network it predicts single label. In multi-label Classification, when you feed input image to the network it predicts multiple labels. You will Learn Deep Learning architectures such as ResNet and AlexNet. The ResNet is a deep convolution neural network proposed for image classification and recognition. ResNet network architecture designed for classification task, trained on the imageNet dataset of natural scenes that consists of 1000 classes. Deep residual nets won the 1st place on the ILSVRC 2015 Classification challenge. Alexnet is a deep convolution neural network trained on ImageNet dataset to classify the images into 1000 classes. It has five convolution layers followed by max-pooling layers, and 3 fully connected layers. AlexNet won the ILSVRC 2012 Classification challenge. You will perform image classification using ResNet and AlexNet deep learning models. The Deep Learning community has greatly benefitted from these open-source models where pre-trained models are a major reason for rapid advancements in the Computer Vision and deep learning research.
Who this course is for:
- Deep Learning enthusiasts interested to learn with Python and Pytorch
- Students and researchers interested in Deep Learning for Image Classification
User Reviews
Be the first to review “Deep Learning with Python for Image Classification”
You must be logged in to post a review.


There are no reviews yet.