Discrete Event Simulation in Python
Discover the power of discrete-event simulation in optimizing your business processes. Learn to develop digital twins using Python’s SimPy package.
Course Description
Discover Discrete-Event Simulation
Have you ever been asked to optimize your industry or business operations? In this course on discrete-event simulation in Python, you will learn how to tackle the optimization of a myriad of processes running in parallel or in sequence.
Explore Process Optimization
Manufacturing, transportation, logistics, and supply-chain activities may require the management of several processes running in parallel or in sequence. Optimizing these processes can be a daunting task, even for small companies, but it is an essential journey needed to increase profitability, tackle bottlenecks, and improve the management of resources.
Develop Digital Twins for Real-World Processes
By leveraging Python’s SimPy package, you’ll develop digital twins for different types of industrial processes based on discrete-event simulations. You’ll encounter several real-world examples, from car production lines and eCommerce to road traffic management and supply-chain activities.
What You’ll Learn
Introduction to Dynamic Systems and Discrete-Event Simulation Models
Let’s unravel the power of discrete-event simulations. To begin this course, you’ll learn to identify problems where discrete-event simulations can be helpful in supporting management and decision-making. You’ll also learn the main components of discrete-event models and how to interpret model outputs. Finally, you’ll build your first “queue” discrete-event model.
Mixing Determinism and Non-Determinism in Models
Explore the types of processes that you can add to discrete-event models. You’ll learn to distinguish between deterministic and non-deterministic processes and how to represent them in models. You’ll also learn how to randomize events (or processes), which is critical to simulate non-deterministic events. Finally, you’ll build a SimPy model combining both deterministic and non-deterministic processes.
Developing Discrete-Event Models Using SimPy
Discover the power of the SimPy package to streamline your discrete-event simulations. In chapter 2, you’ll learn how to build a SimPy model environment and how to add processes and resources. You’ll also learn the different types of resources available, as well as options to control and schedule events. To finish this chapter, you’ll build a complete SimPy model for an aircraft assembly line.
Model Application, Clustering, Optimization, and Modularity
You’ll learn optimization methods to maximize the impact of your discrete-event models. You’ll learn how to perform simulation ensembles using Monte Carlo approaches and discover how to identify clusters in your model results to help you understand its behavior and identify critical processes and tipping points. You’ll also use objective functions to set targets for your model optimization efforts. To end this course, you’ll explore how to make your model scalable so that it can grow stable and in a controlled manner.
User Reviews
Be the first to review “Discrete Event Simulation in Python”
You must be logged in to post a review.
There are no reviews yet.