Extreme Gradient Boosting with XGBoost

0
Level

Advanced

Language

Access

Paid

Certificate

Paid

Learn the fundamentals of gradient boosting and build state-of-the-art machine learning models using XGBoost to solve classification and regression problems.

Add your review

Course Description

Do you know the basics of supervised learning and want to use state-of-the-art models on real-world datasets? Gradient boosting is currently one of the most popular techniques for efficient modeling of tabular datasets of all sizes. XGboost is a very fast, scalable implementation of gradient boosting, with models using XGBoost regularly winning online data science competitions and being used at scale across different industries. In this course, you’ll learn how to use this powerful library alongside pandas and scikit-learn to build and tune supervised learning models. You’ll work with real-world datasets to solve classification and regression problems.

What You’ll Learn

Classification with XGBoost

This chapter will introduce you to the fundamental idea behind XGBoost—boosted learners. Once you understand how XGBoost works, you’ll apply it to solve a common classification problem found in industry: predicting whether a customer will stop being a customer at some point in the future.

Fine-tuning your XGBoost model

This chapter will teach you how to make your XGBoost models as performant as possible. You’ll learn about the variety of parameters that can be adjusted to alter the behavior of XGBoost and how to tune them efficiently so that you can supercharge the performance of your models.

Regression with XGBoost

After a brief review of supervised regression, you’ll apply XGBoost to the regression task of predicting house prices in Ames, Iowa. You’ll learn about the two kinds of base learners that XGboost can use as its weak learners, and review how to evaluate the quality of your regression models.

Using XGBoost in pipelines

Take your XGBoost skills to the next level by incorporating your models into two end-to-end machine learning pipelines. You’ll learn how to tune the most important XGBoost hyperparameters efficiently within a pipeline, and get an introduction to some more advanced preprocessing techniques.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Extreme Gradient Boosting with XGBoost”

×

    Your Email (required)

    Report this page
    Extreme Gradient Boosting with XGBoost
    Extreme Gradient Boosting with XGBoost
    LiveTalent.org
    Logo
    LiveTalent.org
    Privacy Overview

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.