Linear Algebra for Data Science in R

0
Language

Level

Beginner

Access

Paid

Certificate

Paid

Category:

This course is an introduction to linear algebra, one of the most important mathematical topics underpinning data science.

Add your review

Course Description

Linear algebra is one of the most important set of tools in applied mathematics and data science. In this course, you’ll learn how to work with vectors and matrices, solve matrix-vector equations, perform eigenvalue/eigenvector analyses and use principal component analysis to do dimension reduction on real-world datasets. All analyses will be performed in R, one of the world’s most-popular programming languages.

What You’ll Learn

Introduction to Linear Algebra

In this chapter, you will learn about the key objects in linear algebra, such as vectors and matrices. You will understand why they are important and how they interact with each other.

Eigenvalues and Eigenvectors

Matrix operations are complex. Eigenvalue/eigenvector analyses allow you to decompose these operations into simpler ones for the sake of image recognition, genomic analysis, and more!

Matrix-Vector Equations

Many machine learning algorithms boil down to solving a matrix-vector equation. In this chapter, you learn what matrix-vector equations are trying to accomplish and how to solve them in R.

Principal Component Analysis

“Big Data” is ubiquitous in data science and its applications. However, redundancy in these datasets can be problematic. In this chapter, we learn about principal component analysis and how it can be used in dimension reduction.

×

    Your Email (required)

    Report this page
    Linear Algebra for Data Science in R
    Linear Algebra for Data Science in R
    LiveTalent.org
    Logo
    Skip to content