Understanding Data Science

0
Language

Level

Beginner

Access

Paid

Certificate

Paid

An introduction to data science with no coding involved.

Add your review

Course Description

What is data science, why is it so popular, and why did the Harvard Business Review hail it as the “sexiest job of the 21st century”? In this non-technical course, you’ll be introduced to everything you were ever too afraid to ask about this fast-growing and exciting field, without needing to write a single line of code. Through hands-on exercises, you’ll learn about the different data scientist roles, foundational topics like A/B testing, time series analysis, and machine learning, and how data scientists extract knowledge and insights from real-world data. So don’t be put off by the buzzwords. Start learning, gain skills in this hugely in-demand field, and discover why data science is for everyone!

What You’ll Learn

Introduction to Data Science

We’ll start the course by defining what data science is. We’ll cover the data science workflow and how data science is applied to real-world problems. We’ll finish the chapter by learning about different roles within the data science field.

Preparation, Exploration, and Visualization

Data preparation is fundamental: data scientists spend 80% of their time cleaning and manipulating data, and only 20% of their time actually analyzing it. This chapter will show you how to diagnose problems in your data, deal with missing values and outliers. You will then learn about visualization, another essential tool to both explore your data and convey your findings.

Data Collection and Storage

Now that we understand the data science workflow, we’ll dive deeper into the first step: data collection and storage. We’ll learn about the different data sources you can draw from, what that data looks like, how to store the data once it’s collected, and how a data pipeline can automate the process.

Experimentation and Prediction

In this final chapter, we’ll discuss experimentation and prediction! Beginning with experiments, we’ll cover A/B testing, and move on to time series forecasting where we’ll learn about predicting future events. Finally, we’ll end with machine learning, looking at supervised learning, and clustering.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Understanding Data Science”

×

    Your Email (required)

    Report this page
    Understanding Data Science
    Understanding Data Science
    LiveTalent.org
    Logo
    LiveTalent.org
    Privacy Overview

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.