Visualization Best Practices in R
Learn to effectively convey your data with an overview of common charts, alternative visualization types, and perception-driven style enhancements.
Course Description
This course will help you take your data visualization skills beyond the basics and hone them into a powerful member of your data science toolkit. Over the lessons we will use two interesting open datasets to cover different types of data (proportions, point-data, single distributions, and multiple distributions) and discuss the pros and cons of the most common visualizations. In addition, we will cover some less common alternatives visualizations for the data types and how to tweak default ggplot settings to most efficiently and effectively get your message across.
What You’ll Learn
Proportions of a whole
In this chapter, we focus on visualizing proportions of a whole
we see that pie charts really aren’t so bad, along with discussing the waffle chart and stacked bars for comparing multiple proportions.
Single distributions
We now move on to visualizing distributional data, we expose the fragility of histograms, discuss when it is better to shift to a kernel density plots, and how to make both plots work best for your data.
Point data
We shift our focus now to single-observation or point data and go over when bar charts are appropriate and when they are not, what to use when they are not, and general perception-based enhancements for your charts.
Comparing distributions