Visualization Best Practices in R

0
Level

Advanced

Language

Access

Paid

Certificate

Paid

Learn to effectively convey your data with an overview of common charts, alternative visualization types, and perception-driven style enhancements.

Add your review

Course Description

This course will help you take your data visualization skills beyond the basics and hone them into a powerful member of your data science toolkit. Over the lessons we will use two interesting open datasets to cover different types of data (proportions, point-data, single distributions, and multiple distributions) and discuss the pros and cons of the most common visualizations. In addition, we will cover some less common alternatives visualizations for the data types and how to tweak default ggplot settings to most efficiently and effectively get your message across.

What You’ll Learn

Proportions of a whole

In this chapter, we focus on visualizing proportions of a whole

we see that pie charts really aren’t so bad, along with discussing the waffle chart and stacked bars for comparing multiple proportions.

Single distributions

We now move on to visualizing distributional data, we expose the fragility of histograms, discuss when it is better to shift to a kernel density plots, and how to make both plots work best for your data.

Point data

We shift our focus now to single-observation or point data and go over when bar charts are appropriate and when they are not, what to use when they are not, and general perception-based enhancements for your charts.

Comparing distributions

Finishing off we take a look at comparing multiple distributions to each other. We see why the traditional box plots are very dangerous and how to easily improve them, along with investigating when you should use more advanced alternatives like the beeswarm plot and violin plots.

×

    Your Email (required)

    Report this page
    Visualization Best Practices in R
    Visualization Best Practices in R
    LiveTalent.org
    Logo
    Skip to content