Winning a Kaggle Competition in Python
Learn how to approach and win competitions on Kaggle.
Course Description
Kaggle is the most famous platform for Data Science competitions. Taking part in such competitions allows you to work with real-world datasets, explore various machine learning problems, compete with other participants and, finally, get invaluable hands-on experience. In this course, you will learn how to approach and structure any Data Science competition. You will be able to select the correct local validation scheme and to avoid overfitting. Moreover, you will master advanced feature engineering together with model ensembling approaches. All these techniques will be practiced on Kaggle competitions datasets.
What You’ll Learn
Kaggle competitions process
In this first chapter, you will get exposure to the Kaggle competition process. You will train a model and prepare a csv file ready for submission. You will learn the difference between Public and Private test splits, and how to prevent overfitting.
Feature Engineering
You will now get exposure to different types of features. You will modify existing features and create new ones. Also, you will treat the missing data accordingly.
Dive into the Competition
Now that you know the basics of Kaggle competitions, you will learn how to study the specific problem at hand. You will practice EDA and get to establish correct local validation strategies. You will also learn about data leakage.
Modeling
Time to bring everything together and build some models! In this last chapter, you will build a base model before tuning some hyperparameters and improving your results with ensembles. You will then get some final tips and tricks to help you compete more efficiently.
User Reviews
Be the first to review “Winning a Kaggle Competition in Python”
You must be logged in to post a review.
There are no reviews yet.